Actuator-CAT 실습 고급

물용 솔레노이드 밸브 거동해석

EBU | ㈜태성에스엔이

Contents

- 1. 3D 예제 소개
- 2. 형상 작업
- 3. 부품 설계 (Components Design)
- 4. 성능검증 해석
- 5. 솔레노이드 밸브 거동 해석 (2D 해석)

Actuator-CAT 체험존 실행 방법

- 1. eXzone Room 실행
 - Room 버튼 클릭
 - 사용시간 : 평일 9시 ~ 18시
- 2. Actuator-CAT 2D 실행
 - Actuator-CAT 2D-Starter 버튼 클릭
 - (실행:1분소요됨)
- 3. Actuator-CAT 확인

NE

예제 모델 설명

- ▶ 예제 아이템
 - Solenoid Valve : 물용 솔레노이드 밸브
- ▶ 해석 목적

- 성능검증 : 물용 솔레노이드 밸브 거동해석

1. 변위, 자기력

2. 마찰력, 스프링력

3. 유량, 유체력

- 단계 설명 : 밸브 성능검증 시스템 해석
- 작업 내용 : 시스템 모델링, 밸브 거동 해석

디자인 열기

- 1. Toolbar > Open 버튼 클릭
- 2. 디자인 선택
 - Solenoid_Motion 선택 🛑 형상과 부품설계 작업이 완료된 디자인
- 3. Open 버튼 클릭
- 4. Components 단계 이동
 - Toolbar > Components Tab 선택

Open	×
Actuator-CAT_2D Solenoid_Factor Solenoid_Motion	
	5
Delete Design Name :	Open Cancel

Spring 설계

- 1. Coil Spring 추가
 - Toolbar > CSpring 클릭
- 2. 사양 변경
 - coilspring 선택
 - Wire Diameter : 0.5
- 3. Toolbar > Design 버튼 클릭
- 4. Toolbar > Save 버튼 클릭

Part NamecoilspringSpring Constant[N/m]539,37Initial Force[N]-0,6742Free Length[mm]7Installation Length[mm]5,75Installation PosotionUPPER_SIDEWire Diameter[mm]0,5Spring Diameter[mm]3,5Spring Turns[Turns]8Experiment Coefficient0,91Part MaterialSUS301	coilspring			
Spring Constant[N/m]539,37Initial Force[N]-0.6742Free Length[mm]7Installation Length[mm]5,75Installation PosotionUPPER_SIDEWire Diameter[mm]0,5Spring Diameter[mm]3,5Spring Turns[Turns]8Experiment Coefficient0,91Part MaterialSUS301	Part Name	coilspring		
Initial Force[N]0.6742Free Length[mm]7Installation Length[mm]5.75Installation PosotionUPPER_SIDEWire Diameter[mm]0.5Spring Diameter[mm]3.5Spring Turns[Turns]8Experiment Coefficient0.91Part MaterialSUS301	Spring Constant[N/m]	539,37		
Free Length[mm]7Installation Length[mm]5,75Installation PosotionUPPER_SIDEWire Diameter[mm]0,5Spring Diameter[mm]3,5Spring Turns[Turns]8Experiment Coefficient0,91Part MaterialSUS301	Initial Force[N]	-0,6742		
Installation Length[mm]5,75Installation PosotionUPPER_SIDEWire Diameter[mm]0.5Spring Diameter[mm]3,5Spring Turns[Turns]8Experiment Coefficient0,91Part MaterialSUS301	Free Length[mm]	7		
Installation PosotionUPPER_SIDEWire Diameter[mm]0,5Spring Diameter[mm]3,5Spring Turns[Turns]8Experiment Coefficient0,91Part MaterialSUS301	Installation Length[mm]	5, 75		
Wire Diameter[mm] 0,5 Spring Diameter[mm] 3,5 Spring Turns[Turns] 8 Experiment Coefficient 0,91 Part Material SUS301	Installation Posotion	UPPER_SIDE		
Spring Diameter[mm] 3,5 Spring Turns[Turns] 8 Experiment Coefficient 0,91 Part Material SUS301	Wire Diameter[mm]	0,5		
Spring Turns[Turns] 8 Experiment Coefficient 0,91 Part Material SUS301	Spring Diameter[mm]	3,5		
Experiment Coefficient 0,91 Part Material SUS301	Spring Turns[Turns]	8		
Part Material SUS301	Experiment Coefficient	0,91		
	Part Material	SUS301		

coilspring			
Part Name	coilspring		
Spring Constant[N/m]	1616, 71		
Initial Force[N]	-2,0209		
Free Length[mm]	7		
Installation Length[mm]	5,75		
Installation Posotion	UPPER_SIDE		
Wire Diameter[mm]	0,5		
Spring Diameter[mm]	3,5		
Spring Turns[Turns]	8		
Experiment Coefficient	0,91		
Part Material	SUS301		

Maxwell Solver 실행

- 1. Product Test 단계 이동
 - Toolbar > Basic Test Tab 선택
- 2. Solver 실행
 - Toolbar > AEDT > System 클릭
- 3. 실행 확인 (약 1분 소요)
 - AEDT 실행 완료 메시지 창 확인

전기회로 설정

- 1. 전기회로 추가
 - Toolbar > ElectricCurcuit 클릭

2. 전기회로 속성 변경

- Circuit Type : UNIPOLAR_TR
- Duty : 0.65
- Time Step : 0.05

electriccircuit			
Condition Name	electriccircuit		
Circuit Type	UNIPOLAR_TR		
Protection Circuit Ty	pe RC_SNUBBER		
Voltage[V]	14,5		
Current[A]	1,405		
Duty	0,65		
Period[ms]	20		
Frequency[Hz]	50		
Initial Delay[ms]	0		
Snubber Resistance[Ω] <u>300</u>		
Snubber Capacitor[(C] <u>3,3E-06</u>		
Time Step[ms]	0,05		

기계운동 설정

- 1. 기계운동 추가
 - Toolbar > MechanicalMotion 클릭

2. 기계운동 속성 변경

- First Spring Name : coilspring 선택
- Upper Stroke Limit : 1.5
- Magnetic Force Ratio : 0.95
- Side Force Ratio : 0.323
- (0.323 = 7.84 / 24.2 = 측력 / 자기력)

4

다. 역 Condition		1
electriccircuit		
mechanicalmotion		
Experiments		
🖳 🐁 current		
Stroke		
thermal		
	1	

mechanicalmotion			
Condition Name	mechanicalmoti		
Mass[g]	3		
Gravity Condition	GRAVITY_OFF		
Damping[N·s/m]	0, 1		
First Spring	coilspring		
Second Spring			
Upper Stroke Limit[mm]	1,5		
Lower Stroke Limit[mm]	0		
Magnetic Force Ratio	0,95		
Friction Coefficient	0,2		
Side Force Ratio	0, 323		

G

New

Geometry

Open

/

SaveAs

Save

Basic Test

Valve

Product Test

ElectricCircuit

MechanicalMotio

Factor Analysis

Status

Run

100

Save

밸브 설정

- 1. 유압회로 추가
 - Toolbar > HydraulicCurcuit 클릭
- 2. 밸브 속성 변경

SNE

- 기본값 그대로 사용

hydrauliccircuit			
Condition Name	hydrauliccircui		
Flow Coefficient	0,72		
Orifice Diameter[mm]	2		
Minimum Area[mm²]	3,14		
Fluid Material	Water		
Inlet Pipe Diameter[mm]	10		
Inlet Pipe Length[mm]	100		
Inlet Pressure[Pa]	100000		
Outlet Pipe Diameter[mm]	10		
Outlet Pipe Length[mm]	100		
Outlet Pressure[Pa]	0		
Seat Mean Diameter[mm]	2,3		
Seat Ring Width[mm]	0, 3		

밸브 거동 해석

- 1. Valve 실험 추가
 - Toolbar > Valve 클릭
- 2. 실험조건 선택 (속성 창)
 - Electric Circuit > electriccircuit 선택
 - Mechanical Motion > mechanicalmotion 선택
 - Hydraulic Circuit > hydrauliccircuit 선택
 - Total Simulation Time : 20

3. 거동 실험

- Toolbar > Run 클릭 (약 15분 이상 소요)

4. Valve 실험 완료 - 해석 완료 메시지 창 확인

Componen	ts Bi	asic Test	Product Test	3	actor Analy	/sis
SaveAs	Valve	는 Electri 문 Mech :다 Hydra	icCircuit anicalMotion ulicCircuit	Run	Status	Save Report
	TEST	CON	NDITON	AN	ALYZE	RE

밸브 거동 해석 결과

1. 변위, 자기력

2. 마찰력, 스프링력

0.5

0.4

0.3 .ce [N]

0.2

0

-0.1

-0.2 -0.3 ____0

-1.5

-2

-3

-3.5

-4.5

-5

0

ng Force 1 [N] -2.5

Spri -4

Friction For 0.1 3. 유량, 유체력

감사합니다

gtkweon@tsne.co.kr

※ 본 자료의 모든 콘텐츠의 저작권은 ㈜태성에스엔이에 있으므로 무단 전재 및 변형, 배포할 수 없습니다.

