Actuator-CAT 실습 중급

Solenoid 인자분석 해석

EBU | ㈜태성에스엔이

Contents

- 1. 예제 소개
- 2. 설계인자 분석해석
 - 1인자 분석
 - 2인자 분석
 - 공차 민감도 분석
 - 자기포화 분석

Actuator-CAT 체험존 실행 방법

- 1. eXzone Room 실행
 - Room 버튼 클릭
 - 사용시간 : 평일 9시 ~ 18시
- 2. Actuator-CAT 2D 실행
 - Actuator-CAT 2D-Starter 버튼 클릭
 - (실행:1분소요됨)
- 3. Actuator-CAT 확인

NE

4

예제 모델 설명

- ▶ 아이템 : On/Off Solenoid Valve
 유량 차단용 솔레노이드 밸브
- ▶ 해석 목적
 - 형상 인자에 대한 설계분석

- 단계 설명 : 설계 인자분석 해석
- 작업 내용
 - 1인자 분석
 - 2인자 분석
 - 공차 만감도 분석
 - 자기포하 분석

디자인 열기

- 1. Toolbar > Open 버튼 클릭
- 2. 디자인 선택
 - Solenoid_Factor 선택 🛛 🛑 형상과 부품설계 작업이 완료된 디자인
- 3. Open 버튼 클릭

1		Geom	netry	6	R.	Zoom All	🎄 Pan
	New	Open	Save	SaveAs	Import	Zoom In	_ Zoom
			FILE			ZO	OM

Open	×
Actuator-CAT_2D Solenoid_Factor Solenoid_Motion	
	3
Delete Design Name :	Open Cancel

Factor Analysis 이동

- 1. Factor Analysis 단계 이동
 - Toolbar > Factor Analysis Tab 선택

							Solen	oid_example - Actua	tor-CAT								- 0	×
	Geometry	Components	Basic T	'est P	roduct Test	Factor A	nalysis	Material										
New	Open Sav	e SaveAs	OneFactor	TwoFactor	Tolerance	Saturation	Factors	Run Status	Report Result	Force	System St	pp Status	Setting	Help	About			
100	FILE				Factor			ANALYZE	RESULT		AEDI			SETTING				
	actorAnalysis								tsne									
													[29.8887,	13.6137]	SNE CO	oyright 2020), Taesung S	S&E Inc

Maxwell Solver 실행

- 1. Solver 실행
 - Toolbar > AEDT > Force 클릭
- 2. 실행 확인 (약 2분 소요)

- AEDT 실행 완료 메시지 창 확인

- 단계 설명 : 설계 인자분석
- 작업 내용 : Step Height 인자 분석

설계 인자 정의

- 1. 설계 인자
 - 인자 : <u>공극 단차 높이</u>
 - 범위 : Base 1.0, Min. 0.5, Max. 1.5
- 2. 설계 인자 작업 형상
 - One Side : 플런저 공극 단차 하측선
 - Linked : 코어 공극 단차 하측선

설계인자 크기 확인

1. 공극 단차 높이 확인

- 공극 단차 라인 ← 우측 더블 클릭

2. 길이 확인

- 공극 단차 높이 : **1.0**

첫번째 설계인자 설정

- 1. One Side 형상 선택
 - plunger 공극 단차 하측선 더블 클릭

2. 첫번재 설계인자 설정

- Selected Type : One Side 선택
- Factor Name : **step_height**
- Factor Axis : Z
- Base, Min, Max Value : 1.0, 0.5, 2.0
- Factor Increase Direction : Minus
- Save & Close 버튼

(Factor가 증가할 때 이동하는 좌표방향)

+	

Selected Shape :	LINE	
Selected Type :	● One ○ Both	Side 🔿 Linked Side 🔿 Both Side (Sub)
Factor Name :	step_he	ight
Factor Axis :	ΟX	• Z
Base Value :		10
Min Value :		0.5
Min Value :		0,5
Max Value :		2
Factor Increase Dire	ection :	O Plus Minus
Linked Factor :		~
Axis of Movement	:	⊙ X ○ Z
Reverse Direction :	. (1	Main Dir. ↔ Linked Dir.)

연동 형상 설정

- 1. Linked 형상 선택
 - 코어 공극 단차 하측선 더블 클릭
- 2. Linked 형상 설정
 - Selected Type : Linked 선택
 - Linked Factor : **step_height**
 - Axis of Movement : Z
 - Save & Close 버튼

 - +		

Selected Shape :	LINE	
Selected Type :	🔿 One	Side 💿 Linked
	🔿 Both	Side 🔘 Both Side (Sub)
Factor Name :		
Factor Axis :	• X	○ Z
Base Value :		
Min Value :		
Max Value :		
Factor Increase Dire	ection :	Plus O Minus
Linked Factor :	step_hei	ght 🗸
Axis of Movement :		⊙× ⊚Z
Reverse Direction :	(N	Main Dir. ↔ Linked Dir.)

설계 인자 확인

1. 인자 확인 X - Toolbar > Factors 클릭 Factors - Animate 확인 - Close 버튼 클릭 🖳 Design Factor Management \times □· FactorAnalysis ⊡ step_height Selected Shape : LINE One_Side_Main Linked One Side Selected Type : Linked ○ Both Side ○ Both Side (Sub) Factor Name : step_height Factor Axis : 🖲 Z ΟX 1 Base Value : 0,5 Min Value : 1,5 Max Value : 🔿 Plus 💿 Minus Factor Increase Direction : Linked Factor : ○ X ○ Z Axis of Movement : Reverse Direction : (Main Dir. ↔ Linked Dir.) Delete Animate Save Close

설계 인자 분석

- 1. 1인자 설계 분석 추가
 - Toolbar > OneFactor 클릭
 - Tree View > oneFactor 선택

2. 분석조건 변경

- Voltage : 12
- Factor Name : step_height

3. 설계 분석

- Toolbar > Run 클릭

4. One Factor 해석 완료

- 해석 완료 메시지 창 확인

2

- 단계 설명 : 설계 인자분석
- 작업 내용 : Step Height 별 FS 곡선 평가

설계 인자

1. 설계 인자

- 첫번째 인자 : <u>공극 단차 높이</u>
- 범위 : Base 1.0, Min. 0.5, Max. 2.0
- 두번째 인자 : <u>Stroke 이동</u>
- 범위 : Base 0, Min. 0, Max. 1.5
- 2. 인자 분석 의미
 - 공극 단차 높이 변화에 따른 전 동작 구간 자기력 분석

두번째 설계인자 설정

- 1. 형상 보기
 - TreeView > FactorAnalysis 클릭 후
 - FactorAnalysis > oneFactor 클릭
- 2. One Side 형상 선택
 - plunger 더블 클릭

3. 두번째 설계인자 설정

- Selected Type : One Side 선택
- Factor Name : stroke
- Factor Axis : Z
- Base, Min, Max Value : 0.0, 0.0, 1.5

2

One Side

- Factor Increase Direction : Plus
- Save & Close 버튼

	O Both 3	Side O Both Side (Sub)
Factor Name :	stroke	
Factor Axis :	\odot x	• Z
Base Value :		0
Min Value :		0
Max Value :		1,5
Factor Increase Dire	ection :	● Plus ○ Minus
Linked Factor :		~
Axis of Movement :	:	⊙ X ○ Z
Reverse Direction :	(M	lain Dir. ↔ Linked Dir.)

설계 인자 확인

설계 인자 분석

- 1. 2인자 설계 분석 추가
 - Toolbar > TwoFactor 클릭
 - Tree View > twoFactor 선택

2. 분석조건 변경

- Voltage : 12
- Frist Factor Name : stroke
- First Step Count : 7
- Second Factor Name : step_height
- Second Step Count : 4

3. 설계 분석

- Toolbar > Run 클릭 (8분 이상 소요됨)
- 4. Two Factor 해석 완료

- 해석 완료 메시지 창 확인

- 단계 설명 : 설계 인자분석
- 작업 내용
 - Step Height 의 공차 분석
 - 자기회로 자기포화 분석

공차 민감도 분석

- 1. 공차 분석 추가
 - Toolbar > Tolerance 클릭
 - Tree View > tolerance 선택

2. 분석조건 변경

- Voltage : 12
- Factor Name : **step_height**

Notice

OLERANCE 해석이 완료 되었습니다

확인

총 해석 소요시간 : 0.75 Min. 단위 해석 소요시간 : 9.00 Sec

- First Tolerance : 0.05
- Second Tolerance : 0.2

3. 설계 분석

- Toolbar > Run 클릭
- 4. Tolerance 해석 완료
 - 해석 완료 메시지 창 확인

2	tolerance	9
_	Analysis Name	tolerance
	Voltage[V]	12
	Current[A]	1,163
	Recalculate Coil	
	Factor Name	step_height
	First Tolerance[mm]	0,05
	Second Tolerance[mm]	0,2

자기포화 분석

- 1. 자기포화 분석 추가
 - Toolbar > Saturation 클릭
 - Tree View > saturation 선택

2. 분석조건 변경

- Voltage : 12
- 3. 설계 분석

- Toolbar > Run 클릭

- 4. Saturation 해석 완료
 - 해석 완료 메시지 창 확인

4	Notice		×
	1	MAGNETIC_SATURATION 해석이 완료 되었습니다. 총 해석 소요시간 : 0.37 Min. 단위 해석 소요시간 : 5.62 Sec	
		확인	

	saturation
Analysis Name	saturation
Voltage[V]	12
Current[A]	1,163
Stroke[mm]	0

1 Pi 3 lenoid - Actuator-CAT										
its Basic Test	Product Test	Factor A	nalysis	Material						
OneFactor TwoFacto	r Tolerance	Saturation	Factors	Run	Status	Report	Result			

B [te	sla]
	1.7000
	1.5867
	1.4733
	1.2467
	1.1333
	1.0200
	0.9067
	0.7933
	0.6800
	0.5667
	0.4533
	0.3400
	0.1133
	0.0000

감사합니다.

gtkweon@tsne.co.kr

※ 본 자료의 모든 콘텐츠의 저작권은 ㈜태성에스엔이에 있으므로 무단 전재 및 변형, 배포할 수 없습니다.

