Actuator-CAT 실습 초급

Linear Vibrator (VCM) 성능 해석

EBU | ㈜태성에스엔이

Contents

- 1. 예제 소개
- 2. 형상 설계
- 3. 부품 설계 (Components Design)
- 4. 자기력 해석
- 5. 진동자 거동 해석

Actuator-CAT 체험존 실행 방법

- 1. eXzone Room 실행
 - Room 버튼 클릭
 - 사용시간 : 평일 9시 ~ 18시
- 2. Actuator-CAT 2D 실행
 - Actuator-CAT 2D-Starter 버튼 클릭
 - (실행:1분소요됨)
- 3. Actuator-CAT 확인

NE

4

예제 모델 설명

≻ 예제 아이템

- Linear Vibrator : 공진을 이용하여 진동력을 발생시키는 VCM
- ≻ 해석 목적
 - 전류나 변위별 자기력 해석
 - VCM 구동자의 시간에 대한 거동 해석

- 단계 설명 : 2D 형상 작업
- 작업 내용 : 2D Modeling or DXF Import

디자인 생성

- 1. Toolbar > New 버튼 클릭
- 2. Design 명 입력

- LV

3. OK 버튼

2	New	>	×
	Design Name :	LV	
		OK Cancel	

형상 Import

- 1. 형상 Import
 - Toolbar > Import 클릭
- 2. Import DXF 선택

- LV.dxf 선택 후 열기 버튼 클릭

3. 형상 확인

Part 명칭 변경

1. Part 선택

- Tree View > 파트 선택

2. Part 명 변경

- 하단 속성 창에서 Part 명 변경함

수정 전	수정 후
Node0	magnet
Node1	coil
Node2	plate
Node3	yoke
Node4	band
Node5	wrapper

Coil 형상 변경

1. Coil 외경 선택

- Tree View > coil 더블클릭 (coil tree 확장)
- line7 선택
- 2. Coil 외경 변경
 - P1_X : 1.92
 - P2_X : 1.92

Line 7			
1,92			
-0,69			
1,92			
0,51			
	Line 7 1,92 -0,69 1,92 0,51		

- 단계 설명 : 파트별 설계 및 속성 변경
- 작업 내용 : 코일, 스프링 설계, 재질 변경

부품 설계 이동

- 1. Components 단계 이동
 - Toolbar > Components Tab 선택

Magnet 설정

1. Magnet 선택

- Tree View > magnet 선택
- Ň

- 2. 속성 변경
 - Part Type : MAGNETIC_STEEL → MAGNET
 - Moving Part : FIXED → MOVING

Coil 설정

1. Coil 선택

- Tree View > coil 선택

2. 속성 변경

- Part Type : MAGNETIC_STEEL \rightarrow **COIL**
- Current Direction : OUT 선택
- Coil Wire Grade : Bonded_IEC_Grade_1B 선택
- Copper Diameter : 0.35 mm \rightarrow 0.045

Coil Wire G	ìrade	EC_Grade_18		
nner Diamet	Enameled	LIEC_Grade_2	^	
Duter Diame <mark>r</mark>	Bonded_It	C_Grade_18		
Coil Height	Enameled	LUIS_Class_0		
opper Diame	Enameled Enameled	LIS_Class_1 LIS_Class_2		
Wire Diamete	Enameled	LJIS_Class_3	~	

2

Coil 설계

- 1. Coil 설계
 - Toolbar > Design 클릭

2. 설계 결과 확인

coil	
Part Name	coil
Part Type	COIL
Part Color	Orange
Part Material	Copper
Current Direction	
Meuioa Dert	EIVED
Moving Part	FIXED
Coll Basisteres [a]	15.01
Coll Hesistance[Ω]	15,21
Coll Layers[Layers]	U
Turns Of One Layer[Turns]	0
Coil Wire Grade	Bonded_IEC_
Inner Diameter[mm]	3
Outer Diameter[mm]	3,37
Coil Height[mm]	1,2
Copper Diameter[mm]	0,045
Wire Diameter[mm]	0,049533604
Coil Temperature[℃]	20
Horizontal Coefficient	0,9
Vertical Coefficient	0,98
Resistance Coefficient	1

연자성체 설정

1. Plate 선택

- Tree View > plate 선택

2. 속성 변경

- Moving Part : FIXED \rightarrow **MOVING**

3. Yoke 선택

- Tree View > yoke 선택

4. 속성 변경

- Moving Part : FIXED → MOVING

해석 형상 설정

- 1. Band 선택 (동작 영역)
 - Tree View > band 선택

Ň

2. 속성 변경

- Part Type : MAGNETIC_STEEL → **BAND**

- 3. Wrapper 선택 (구동부 묶음)
 - Tree View > wrapper 선택
- 4. 속성 변경

- Part Type : MAGNETIC_STEEL → WRAPPER

wrap	per	
Part Name	wrapper	А
Part Type	WRAPPER	
Part Color	White	
Seed Count Of Edge	50	

Spring 설계

- 1. Flat Spring 추가
 - Toolbar > FSpring 클릭
- 2. 사양 변경
 - flatspring 선택
 - Experiment Coefficient : 0.8
- 3. Toolbar > Design 버튼 클릭
- 4. Toolbar > Save 버튼 클릭

- 단계 설명 : 성능검증 2차원 해석
- 작업 내용 : 변위-자기력 해석, 전류-자기력 해석

Basic Test 이동

- 1. Basic Test 단계 이동
 - Toolbar > Basic Test Tab 선택

Maxwell Solver 실행

- 1. Solver 실행
 - Toolbar > AEDT > System 클릭
- 2. 실행 확인 (약 2분 소요)

- AEDT 실행 완료 메시지 창 확인

변위별 자기력 해석

- 1. Stroke 해석 추가
 - Toolbar > Stroke 클릭
 - Tree View > stroke 선택

2. 해석조건 변경

- Current : 0.1
- Initial Stroke : -0.5
- Final Stroke : 0.5

3. Stroke 해석

- Toolbar > Run 클릭 (약 2분 소요)

4. Stroke 해석 완료

- 해석 완료 메시지 창 확인

st C			
Test Name	stroke		
Current[A]	0,1		
Initial Stroke[mm]	-0,5		
Final Stroke[mm]	0,5		
Step Count[Step]	6		

전류별 자기력 해석

- 1. Current 해석 추가
 - Toolbar > Current 클릭
 - Tree View > current 선택

2. 해석조건 변경

- Final Current : 0.1

3. Current 해석

- Toolbar > Run 클릭 (약 2분 소요)

Notice

4. Current 해석 완료

- 해석 완료 메시지 창 확인

- 단계 설명 : 성능검증 시스템 해석
- 작업 내용 : 진동자 공진 거동해석

구동자 거동 해석

- 1. 전기회로 추가
 - Toolbar > ElectricCircuit 클릭

2. 전기회로 속성 변경

- Circuit Type : CURRENT_CONTROL 선택
- Signal Type : SIN 선택
- Current : 0.1
- Frequency : 175

3. 기계운동 추가

- Toolbar > MechanicalMotion 클릭

4. 기계운동 속성 변경

- Mass : 1.32
- First Spring Name : flatspring 선택
- Upper Stroke Limit : 0.5
- Lower Stroke Limit : -0.5

ele		
Condition Name	electriccircuit	
Circuit Type	CURRENT_CONTROL	2
Signal Type	SIN	
Current[A]	0, 1	
Period[ms]	5,71	
Frequency[Hz]	175	
Offset	0	
Time Step[ms]	0,143	

구동자 거동 해석

- 1. Motion 해석 추가
 - Toolbar > Motion 클릭

2. 해석조건 선택 (속성 창)

- Electric Circuit Name > electriccircuit 선택
- Mechanical Motion Name > mechanicalmotion 선택
- Total Simulation Time : 20

3. 거동 해석

- Toolbar > Run 클릭 (약 3분 소요)

4. Motion 해석 완료
- 해석 완료 메시지 창 확인

4		
Notice		×
1	MOTION_TEST 해석이 완료 되었습니다. 총 해석 소요시간 : 1.70 Min. 단위 해석 소요시간 : 0.71 Sec	
	확인]

motion

Test Name

Electric Circuit Name

Mechanical Motion Name

Total Simulation Time[ms]

감사합니다.

gtkweon@tsne.co.kr

※ 본 자료의 모든 콘텐츠의 저작권은 ㈜태성에스엔이에 있으므로 무단 전재 및 변형, 배포할 수 없습니다.

